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Accurate acceleration measurements during atmospheric entry have long been used 
to derive atmospheric properties, such as density, pressure, and temperature. How 
well can atmospheric properties be derived from inaccurate velocity measurements 
via Doppler-shifted telemetry?

Such a technique would (a) work even if the spacecraft splats upon impact 
before returning its recorded science data and (b) work in real time during the 
descent, providing instant data for the eager public.

I will present analysis techniques that are optimized to work with inaccurate 
velocity measurements instead of accurate acceleration measurements. Accelerations 
derived from repeated inaccurate velocities are very, very uncertain indeed.

Reasonable results for pressure and temperature, but not density, profiles appear 
possible. A surprisingly accurate measurement of temperature at peak acceleration is 
also possible. 
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Motivation
MER will have a direct-to-Earth telemetry link during its entry into the martian 
atmosphere. The Doppler shift in its telemetry is fixed by its line-of-sight velocity. 
In this poster I use a simplified entry geometry to test whether these crude 
measurements of its speed as a function of time can provide any useful information 
on atmospheric density, pressure, and temperature. 

I start with the basic, time-honoured ideas of entry accelerometer data analysis and 
adapt them to be suitable for inaccurate velocity, and even more inaccurately 
derived acceleration, measurements, rather than accurate acceleration measurements. 
It is better to use an approximate technique that works with the most accurately 
known and measured properties, than to use one which is formally exact but works 
with crudely known and derived properties. This is because results from the 
approximate technique will often have smaller uncertainties than those from exact 
techniques.



Assumptions in Simple Model

Vertical entry into a non-rotating atmosphere, neglecting gravity, so the only force 
on the spacecraft is aerodynamic drag. Velocity, v, is known at equally spaced time 
intervals of ∆ from Doppler shifts in the telemetry. Each measurement of v has same 
random error, σ

v
, except for v

0
 which is known exactly from cruise tracking. v is 

positive, so acceleration, a, is negative. First, the trajectory (altitude, z) must be 
found from the measurements of v. For algebraic convenience, I shall find z at times 
halfway between each measurement of v. I also derive acceleration, a, and v at these 
times for later use. 
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Relationships between atmospheric 
properties and trajectory

Eqn 6 relates the atmospheric density, ρ, to the spacecraft's velocity and 
acceleration. C

D
 is the drag coefficient, usually close to 2, which is known as a 

function of v, ρ, and temperature, T. A is the cross-sectional area of the spacecraft, 
and m is its mass. ρ and pressure, p, are related by hydrostatic equilibrium in Eqn 7. 
p, ρ, and T are related in the ideal gas law, Eqn 8, using Boltzmann's constant, k

B
, 

and the known mean molecular mass, M
mol

. 

I shall manipulate these three equations in various ways to obtain expressions for 
ρ, p, and T using a, v, and z with the known C

D
, m, A, k

B
, and M

mol
. 
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First and Only Technique for ρ

Starting from Eqn 6, I use Eqns 3 and 4 for a and v and obtain Eqn 9 for ρ. Its use of 
the small difference between the large and uncertain v

n
 and v

n+1
 will make this 

derived density have large uncertainties. Hence p and T derived from it may also 
have large uncertainties... It will also be useful later to know ρ

n
, for which I use the 

geometric mean of ρ
n-1/2

 and ρ
n+1/2

 (Eqn 10).
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First Techniques for p and T
(Traditional)

Starting from Eqn 7, I can use the results from Eqns 5 and 9 for z and ρ to find p*. I 
label pressures derived by this technique p* to distinguish them from the other 
derived pressures. Starting from eqn 8, I use the results from eqns 10 and 11 for ρ 
and p* to find T* in Eqn 12.
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Second Techniques for p and T
(Isothermal)

Combining the assumption of an isothermal atmosphere with Eqns 7 and 8 gives 
Eqn 13 above. z

n+1/2
 and ρ

n+1/2
, from Eqns 5 and 9, can be used to find T@ and then p@ 

in Eqns 14 and 15.
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Special Case at Peak Deceleration

The formula for T@ in terms of the measured velocities (not shown) can be 
simplified greatly at peak deceleration when v

n-1
 = v

n
+ δ and v

n+1
 = v

n
- δ. This 

result for T@ at peak deceleration, which I call T#, is shown above. It is only valid at 
peak deceleration and is useless everywhere else.

T n

D E M mol g

F

k B

vn
2

vn G 1 H vn I 1 Eqn 16



Third Techniques for p and T
(Constant C

D
 and Isothermal)

Dividing Eqn 6 by Eqn 2  and rearranging gives Eqn 17. Assuming that C
D
 is 

constant leads to Eqn 18. p
0
, which is negligibly small, and v

0
, which is well-known 

from cruise tracking, are the top of the atmosphere values. The assumption of 
constant C

D
 is accurate to about 20% or so, perfectly adequate for studying pressures 

which vary by many orders of magnitude. Again assuming an isothermal 
atmosphere leads to Eqns 19 and 20.
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Summary of Different Techniques
The first and only technique for density depends on the small difference between 
two large and poorly known velocities, so has large uncertainties. The first 
techniques for pressure (p*) and temperature (T*) rely on integrating these densities 
with respect to altitude, which gives uncertain results but does not make any 
additional simplifying assumptions. The second techniques for pressure (p@) and 
temperature (T@) assume an isothermal atmosphere and also rely on ratios of derived 
densities, which will be very uncertain indeed. The special case of peak deceleration 
in the T@ technique leads to a temperature estimate (T#) which has small 
uncertainties. The third techniques for pressure (p$) and temperature (T$) assume that 
C

D
 is constant and do not rely on differences between velocities, hence they should 

have small uncertainties



Application of these Techniques to a Pathfinder-like 
Entry

Error in derived velocity, v, is predominantly due to uncertainty in transmission 
frequency of spacecraft, σ

v
 = c σ

trans
/ f

trans
. Pathfinder's transmitter had a systematic 

drift with maximum drift value of 10-7 of the nominal frequency (8 GHz), but I will 
assume random errors with σ

trans
/ f

trans
 of 10-7 . This makes the error analysis easier. I 

choose m=500 kg, A=5 m2, a vertical entry speed of 2 km s-1 at 120 km, C
D 

= 2, and 

an isothermal atmosphere at 200 K with a surface density of 10-2 kg m-3. 

I first derive the actual entry trajectory under these conditions and extract v at every 
4 seconds. Next I add random errors to these values of v corresponding to the noise 
level discussed above, and use these noisy v values with my various techniques to 
derive the trajectory and atmospheric structure. These derived results are then 
compared to the actual values specified for the simulated entry. The uncertainty 
analysis is not presented here, but can be found in my dissertation.
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Fig 1. v
n+1/2

 (crosses) and uncertainties (vertical lines) versus time since entry, 

derived using the noisy values of v from Doppler measurements. The 
continuous curve shows the speeds that actually occurred in the simulated entry.



Fig 2. a
n+1/2

 (crosses) and uncertainties (vertical 

lines) versus time since entry, derived using the 
noisy values of v from Doppler measurements. 
The continuous curve shows the accelerations 
that actually occurred in the simulated entry.
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Fig 3. z
n+1/2

 (crosses) and uncertainties 

(vertical lines) versus time since entry, 
derived using the noisy values of v from 
Doppler measurements. The continuous 
curve shows the altitudes that actually 
occurred in the simulated entry.
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Fig 4. First and only technique for density.
ρ

n+1/2
 (crosses) and uncertainties (vertical lines) versus time since entry, derived 

using the noisy values of v from Doppler measurements. If the uncertainty is 
greater than the nominal value, then only one side of the error bar is plotted.
The continuous curve shows the densities that actually occurred in the simulated 
entry.



Fig 5. First technique for pressure.
p*

n
 (crosses) and uncertainties (vertical lines)

versus time since entry, derived using the 
noisy values of v from Doppler measurements. 
If the uncertainty is greater than the nominal 
value, then only one side of the error bar is 
plotted. The continuous curve shows the 
pressures that actually occurred in the 
simulated entry.
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Fig 6. First technique for temperature.
T*

n
 (crosses) and uncertainties (vertical lines)

versus time since entry, derived using the noisy 
values of v from Doppler measurements. If the 
uncertainty is greater than the nominal value, 
then only one side of the error bar is plotted.
The continuous curve shows the temperatures 
that actually occurred in the simulated entry.
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Fig 7. Second technique for pressure.
p@

n
 (crosses) and uncertainties (vertical lines)

versus time since entry, derived using the 
noisy values of v from Doppler measurements. 
If the uncertainty is greater than the nominal 
value, then only one side of the error bar is 
plotted. The continuous curve shows the 
pressures that actually occurred in the 
simulated entry.

Fig 8. Second technique for temperature.
T@

n
 (crosses) and uncertainties (vertical lines)

versus time since entry, derived using the noisy 
values of v from Doppler measurements. If the 
uncertainty is greater than the nominal value, 
then only one side of the error bar is plotted.
The continuous curve shows the temperatures 
that actually occurred in the simulated entry.
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Fig 9. Special case of Second technique for temperature at peak deceleration. 
T#

n
 (crosses) and uncertainties (vertical lines) versus time since entry, derived using the 

noisy values of v from Doppler measurements. If the uncertainty is greater than the 
nominal value, then only one side of the error bar is plotted. The continuous curve shows 
the temperatures that actually occurred in the simulated entry. The only derived 
temperature on this figure that is useful is that which occurs at peak deceleration, or 54s 
using an earlier figure. T#

54s
 is close to the specified value of 200K.
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Fig 10. Third technique for pressure.
p#

n
 (crosses) and uncertainties (vertical lines)

versus time since entry, derived using the 
noisy values of v from Doppler measurements. 
If the uncertainty is greater than the nominal 
value, then only one side of the error bar is 
plotted. The continuous curve shows the 
pressures that actually occurred in the 
simulated entry.

Fig 11. Third technique for temperature.
T#

n+1/2
 (crosses) and uncertainties (vertical lines)

versus time since entry, derived using the noisy 
values of v from Doppler measurements. If the 
uncertainty is greater than the nominal value, 
then only one side of the error bar is plotted.
The continuous curve shows the temperatures 
that actually occurred in the simulated entry.
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Discussion of Figures

The derived altitudes (Fig 3) and velocities (Fig 1) are accurate, but the derived 
accelerations (Fig 2) are, as expected, much less accurate. 

The derived densities (Fig 4) are only useful in the lower atmosphere. 

Both the first and third techniques for pressure (Figs 5 and 10) give useful results in 
the lower atmosphere, but the second technique for pressure (Fig 7) is near useless. 

The first and third techniques for temperature (Figs 6 and 11) give noisy results that, 
in the lower atmosphere, are scattered around the true value. Averaging within these 
would give a better temperature result, but with lower vertical resolution. 

The second technique for temperature (Fig 8) is near useless, but its special case at 
peak deceleration (Fig 9) appears to give one, and only one, very accurate 
temperature measurement.



Conclusions

Atmospheric properties derived by any of these techniques will have such large 
uncertainties that they are only likely to be scientifically useful on a planet whose 
atmosphere has not be studied be entry accelerometers before. They might be useful 
for other reasons if there is programmatic or public interest either in immediate 
results during a successful entry or in results from an unsuccessful entry. 

The assumptions of random noise, rather than systematic drift, and of a constant C
D
 

or isothermal atmosphere will introduce some bias and additional uncertainties into 
the derived atmospheric properties. Using accurate entry geometry and including 
gravity will make the techniques more complicated, but are not too difficult. I hope 
to test these techniques on the successful entries of MER-A and MER-B. If 
validated, they can be used for operational support of Phoenix and MSL.

I acknowledge helpful discussions of Mars Pathfinder with Sam Thurman at JPL.

See also Chapter 6 of http://www.lpl.arizona.edu/~withers/phd.html


