How the ionosphere of Mars works

Paul Withers Boston University (withers@bu.edu)

Department Lecture Series, EAPS, MIT

Wednesday 2012.02.08 16:00-17:00

www.solarviews.com

Mars

What is an ionosphere?

Cambridge Atmospheric and Space Science Series

What is an ionosphere?

Cambridge Atmospheric and Space Science Series

An ionosphere is a weakly ionized plasma embedded within an upper atmosphere, often produced by photoionization

Ionospheres

Physics, Plasma Physics, and Chemistry Second edition

Robert Schunk and Andrew Nagy

What does that actually mean?

	Atmosphere	lonosphere	Space physics
Chemistry	×	\checkmark	×
Gravity	~	\checkmark	×
Sunlight	\checkmark	\checkmark	×
Magnetic fields	×	?	\checkmark
Composition	Neutrals	lons, electrons, and neutrals	Protons and electrons

What we know about composition

Neutral species

Ion species

Making ions – Start with sunlight

Solar spectrum

Cross-section of CO₂

www.spacewx.com

Soft X-ray (XUV) = 1-10 nm Extreme ultraviolet (EUV) = 10-100 nm

Preamble The basics

Magnetic field Mysteries

7/31

- Optical depth(z) = $n(z) \sigma H$
- n = neutral number density
- $\sigma = cross-section of carbon dioxide$
- H = scale height of neutral atmosphere

- Optical depth(z) = $n(z) \sigma H$
- Flux = Flux-at-infinity x exp(-optical depth)

- Optical depth(z) = $n(z) \sigma H$
- Flux = Flux-at-infinity x exp(-optical depth)
- Number of ions produced cm⁻³ s⁻¹ = F σ n

 Flux x cross-section x neutral density cm⁻² s⁻¹ cm² cm⁻³

- Optical depth(z) = $n(z) \sigma H$
- Flux = Flux-at-infinity x exp(-optical depth)
- Number of ions produced cm⁻³ s⁻¹ = F σ n

Losing ions

- CO₂⁺ + O -> O₂⁺ + CO
- O₂⁺ + e -> O + O

very fast few minutes

Vertical structure

Things are different at the top

- Composition
- No longer pure O₂⁺
- Transport
- Density gradients always drive motion, but can be impeded by collisions with neutrals

"Three wise men"

	Low altitude	High altitude
Production	X-ray solar photons (1-10 nm)	Extreme ultraviolet (EUV) solar photons (10-100 nm)
Composition	Molecular ions	Atomic ions
Transport	Negligible	Important - and can be influenced by magnetic fields

What does "low" and "high" mean in each case?

Where have we got to?

- 1978
- No useful observations from 1978 to 1998

- Next...
- Effects of magnetic fields
- Wide range of observations that don't fit into the basic template

Mars is magnetically crazy

Earth magnetic field

www.windows2universe.org

Mars magnetic field

Brain (2002)

Preamble The basics Mag

Magnetic field Mysteries

Magnetic field at Mars

"Shield and sword"

Lillis et al. (2011)

Closed field lines – Both ends anchored on planet

Open field lines – One end anchored on planet, other end connects with solar wind

Enhanced peak electron densities

Peak electron densities MARSIS radar instrument Enhancements seen over strong and vertical crustal magnetic fields

Preamble The basics Magnetic field Mysteries

Angle

between

field and

Higher densities at all altitudes above strong and vertical fields

Gurnett et al. (2008)

 $N = 1E4 \text{ cm}^{-3} \text{ x (f/MHz)}^2$ Specular echo at frequency f gives range to regions of corresponding plasma density Extra echo must come from "iso-electron density surface" somewhere off to the side

Preamble The basics **Mysteries** Magnetic field

Internal effects of **B** as well

$$m_j \frac{\partial v_j}{\partial t} + m_j \left(\underline{v_j} \cdot \underline{\nabla} \right) \underline{v_j} = m_j \underline{g} - \frac{1}{N_j} \underline{\nabla} \left(N_j k T_j \right)$$

Gravity and pressure gradients

$$+ q_j \underline{E} + q_j \underline{v_j} \times \underline{B}$$

 $-m_j\nu_{jn}(v_j-\underline{u})$

Electric and magnetic fields

Ion-neutral collisions

 $\kappa_{j} = \frac{q_{j}B}{m_{j}v_{jn}}$ This is a critical ratio – defines "strong" or "weak" field lon gyrofrequency to ion-neutral collision frequency

Localized variations as well

Menagerie of oddities not connected with magnetic fields

At the bottom

At the EUV-produced layer

Wiggles as well

Wiggles are suggestive of plasma motion

But transport should be negligible at these low altitudes

Preamble The basics Magnetic field Mysteries

29/31

Higher altitude layers

Each observed cusp (dip) means a local maximum in plasma density

Other observations also show deviations from "typical" shape of upper ionosphere

This derived profile has some inherent flaws, is forced to assume a smooth shape

How does the ionosphere of Mars work?

- Mars used to have a nice, simple ionosphere
- Unique magnetic fields have two effects
 - Exclude and enhance impact of the solar wind
 - Influence bulk motion and small-scale instabilities
- Many recent observations show limitations of current understanding
- MAVEN mission (2013) will reveal chemistry, dynamics, and energetics