Evolution of the D/H ratio on Venus

Sources of D and H

Accreted with Primordial Ocean or very little water Comets Outgassing of volatiles Global Resurfacing Event

D/H ratios of sources? Earth, chondrites, Halley Primordial solar nebula, Jupiter, Interstellar medium Current Venus Escape Mechanisms Thermal - Jeans escape, Blowoff Nonthermal - Supply energy by **E** (to ions) or hv Energy ends up as kinetic energy High speed atoms/molecules escape Possibly high speed ions as well

<u>Fractionation</u> More light isotopes escape than heavier isotopes

Quantify by fractionation factor f

$$f\frac{dH}{H} = \frac{dD}{D}$$

What are current escape rates? What are current fractionation factors?

Tackling the problem of 4.5 By worth of evolution

Assume current escape rates or timescales Assume current fractionation factors Why? Is this any use?

My contribution

Gurwell (1995) - reconcile steady state and primordial ocean

Me - reconcile global resurfacing and primordial ocean

Assume a fractionation factor of 0.3, timescale of 300 My Start 4.5 Bya, global resurface 0.5 Bya Assume terrestrial D/H for both injections

Solution

$$H = H_o e^{-t/\tau} + H_G e^{-(t-T)/\tau}$$
$$D = D_o e^{-ft/\tau} + D_G e^{-f(t-T)/\tau}$$

Two variables, two constraints. Solve for the sizes of the two injections

200m primordial ocean and 8cm global resurfacing injection Well within with upper limits

Success?

Model is simple and can reproduce current atmosphere with reasonable primordial ocean and global resurfacing injection.

But.....Assume everything constant

When D ~ H the algebra probably fails

In conclusion

This model is as good as anyone else's This model is as poor as anyone else's