Estimating Uncertainties in Measurements of Atmospheric Properties by Radio Occultations

Paul Withers

Center for Space Physics, Boston University (withers@bu.edu)

MEX/VEX Radio Science Meeting 2009.04.16-17 Cologne, Germany

Background

- I wanted to predict uncertainties in the atmospheric density and ionospheric electron density that would be measured by a hypothetical radio occultation experiment
- I didn't see obvious and useful relationships in the literature, so I started to derive some
- Closer reading of the literature suggests that most of what I found has already been published, but in many scattered places

A big, bad assumption

$$s(t) = A(t) \sin \left[2\pi f(t)t\right] + \epsilon(t),$$

Lipa and Tyler (1979)

- I neglect noise and consider only errors due to variations in frequency due to oscillator's Allan Deviation
- This is not a good assumption, but it gives me a place to start
- Next steps are to incorporate noise

Bending angle and refractive index

$$\alpha'(a') = -2a' \int_{r=r'}^{r=\infty} \frac{d\ln\mu(r)}{dr} \frac{dr}{\sqrt{(\mu(r)r)^2 - a'^2}}$$

 $v = \mu - 1$

$$\nu = \nu_0 \exp\left(\frac{-\left(r - r'\right)}{H}\right)$$

Assume exponential function to make algebra easy

where H is a scale height. If $|\nu_0| \ll 1$, then:

$$\frac{d\ln\mu}{dr} = \frac{-\nu_0}{H} \exp\left(\frac{-(r-r')}{H}\right)$$

Smallest detectable refractivity

$$\alpha'(a') = \nu_0 \sqrt{\frac{2\pi a'}{H}} = \nu(r') \sqrt{\frac{2\pi a'}{H}}$$

 $AD = \delta f/f$

Approximate relationship between frequency shift and bending angle is: df / f = v α / c

Minimum detectable frequency shift set by Allan Deviation (Neglects effects of noise)

$$\nu_{min} = \frac{ADc}{v} \sqrt{\frac{H}{2\pi R}}$$

Expression for smallest detectable refractivity which is an estimate of measurement uncertainty

lonosphere

$$\mu_e^2 = 1 - \frac{Ne^2}{4\pi^2 m_e \epsilon_0 f^2}$$

Ionospheric refractive index

$$N_{min} = 4\pi \cdot ADf^2 \cdot \frac{c}{v} \cdot \frac{m_e \epsilon_0}{e^2} \sqrt{\frac{2\pi H}{R}}$$

Minimum detectable electron density

N_{min} proportional to: (AD / v) x (H/R)^{0.5}

N_{min} proportional to: f²

Neutral Atmosphere

 $v = \kappa n$ Refractive volume κ (~1E-29 m³) controls refractivity

$$n_{min} = \frac{AD}{\kappa} \cdot \frac{c}{v} \sqrt{\frac{H}{2\pi R}}$$

Minimum detectable neutral number density

n_{min} proportional to: (AD / v) x (H/R)^{0.5}

 n_{min} proportional to: $1/\kappa$

H/R ~ 0.02 (Jupiter) to 0.13 (Pluto)

Table 4 Parameters for radio occultations at Mars, Jupiter and Titan

	Mars	Jupiter	Titan
AD	$^23\times10^{-13}$	$^64\times10^{-12}$	$^{11}2\times 10^{-13}$
f (GHz)	28.4	$^{7}2.3$	$^{11}8.4$
$v \ (\mathrm{km \ s^{-1}})$	$^{3}3.4$	⁸ 14	$^{12}5.6$
$H~(\mathrm{km})$	$^{4}10$	$^{4}25$	$^{13}20/80$
$R~(\mathrm{km})$	$^{4}3400$	4 70,000	42575
$\kappa \ ({ m m}^3)$	5 1.8 $ imes$ 10 ⁻²⁹	$^{9}6.2 imes 10^{-30}$	$^{14}1.1\times10^{-29}$
$N_{min} (\mathrm{m}^{-3})$	$1.0 imes 10^9$	8.5×10^7	$^{15}1.3\times10^9$
$n_{min} \ (\mathrm{m}^{-3})$	3.2×10^{19}	1.0×10^{20}	$^{16}3.4\times10^{19}$
$^{1}\alpha_{surf}$ (rad)	1.8×10^{-4}	$^{10}0.036$	$^{16}0.036$

Next Steps

- Include effects of noise, which probably dominate in real experiments
- Please give me comments, feedback and suggestions
- Does what I'm looking for already exist in the literature?