Integration of MAVEN neutral and plasma observations (or, Testing basic ionospheric predictions and seeing where they fail)

Paul Withers (withers@bu.edu) MAVEN Participating Scientist Tag team seminar, BU 2014.02.20

Several predictions can be properly tested for the first time

• *τ* at peak = ?

- τ at peak = 1
- $\int n \sigma dl = 1$

- τ at peak = 1
- $\int n \sigma dl = 1$
- $\int n \sigma dz = 1$ (subsolar)

- τ at peak = 1
- $\int n \sigma dl = 1$
- $\int n \sigma dz = 1$ (subsolar)
- n σ H = 1

- τ at peak = 1
- $\int n \sigma dl = 1$
- $\int n \sigma dz = 1$ (subsolar)
- n σ H = 1
- (p/kT) σ (kT/mg) = 1

- τ at peak = 1
- $\int n \sigma dl = 1$
- $\int n \sigma dz = 1$ (subsolar)
- n σ H = 1
- (p/kT) σ (kT/mg) = 1
- $p\sigma/mg = 1$
- Neutral pressure at peak is m g / σ

- τ at peak = 1
- $\int n \sigma dl = 1$
- $\int n \sigma dz = 1$ (subsolar)
- n σ H = 1
- (p/kT) σ (kT/mg) = 1
- $p \sigma / mg = 1$
- Neutral pressure at peak is m g / σ

- Find peak plasma density with LPW
 - Langmuir probe instrument, Ne and Te
- Find pressure with NGIMS
 - Neutral/ion mass spectrometer
 - Hydrostatic equilibrium

- $\partial N/\partial t = P L$
- (neglecting transport)

- $\partial N/\partial t = P L$
- $P = F n \sigma$

- $\partial N/\partial t = P L$
- **P** = **F** n σ
- Check dimensions
- cm⁻² s⁻¹ . cm⁻³ . cm²
- cm⁻³ s⁻¹ OK

- $\partial N/\partial t = P L$
- **P** = **F** n σ
- Subsolar and at $\tau = 1...$
- $F = F_0 / e$ and $n_{\sigma}H = 1$

- $\partial N/\partial t = P L$
- **P** = **F** n σ
- Subsolar and at $\tau = 1...$
- $F = F_0 / e$ and $n_{\sigma}H = 1$
- $P = F_0/eH$

- $\partial N/\partial t = P L$
- $P = F n \sigma$
- At peak, $P = F_0/eH$

- CO₂ + hv -> CO₂⁺ + e
- CO₂⁺ + O -> O₂⁺ + CO
 fast
 - CO_2^+ is <u>not</u> main ion
- O₂⁺ + e -> O + O
 slow
 - produces hot O, which escapes

- $\partial N/\partial t = P L$
- $P = F n \sigma$
- At peak, $P = F_0/eH$
- L = α (Te) N²

- CO₂ + hv -> CO₂⁺ + e
- CO₂⁺ + O -> O₂⁺ + CO
 fast
 - CO_2^+ is <u>not</u> main ion
- O₂⁺ + e -> O + O
 slow
 - produces hot O, which escapes

- $\partial N/\partial t = P L$
- $P = F n \sigma$
- At peak, $P = F_0/eH$
- L = α (Te) N²
- $F_0/eH = \alpha(Te) N^2$

- CO₂ + hv -> CO₂⁺ + e
- CO₂⁺ + O -> O₂⁺ + CO
 fast
 - CO_2^+ is <u>not</u> main ion
- O₂⁺ + e -> O + O
 slow
 - produces hot O, which escapes

- $\partial N/\partial t = P L$
- $P = F n \sigma$
- At peak, $P = F_0/eH$
- $L = \alpha(Te) N^2$
- $F_0/eH = \alpha(Te) N^2$

- Find F₀ with UV instruments
- Find H with NGIMS neutral mass spectrometer
- Find Te and Ne with LPW Langmuir probe

- P = L

- P = L
- P = F n σ
- L = α (Te) N²

- P = L
- **P** = **F** n σ
- L = α (Te) N²
- F n $\sigma = \alpha$ (Te) N² • 1 1 constant

- P = L
- **P** = **F** n σ
- L = α (Te) N²
- F n $\sigma = \alpha$ (Te) N² • **1 1 constant**
- $n_0 exp(-z/H)$ proportional to N^2
- N proportional to exp(-z/2H)
- Hp = 2Hn = 2kT/mg

- P = L
- P = F n σ
- L = α (Te) N²
- F n $\sigma = \alpha$ (Te) N² • **1 1 constant**

- Predict Hp = 20 km
- Hp from LPW Langmuir probe electron densities
- Hn from NGIMS mass spectrometer neutral densities
- n₀exp(-z/H) proportional to N²
- N proportional to exp(-z/2H)
- Hp = 2Hn = 2kT/mg

• $\partial N/\partial t + \nabla (N\underline{v}) = P - L$

- $\partial N/\partial t + \underline{\nabla}.(N\underline{v}) = P L$
- $0 = m_i \underline{g} \frac{1}{N} \underline{\nabla}(NkT_i) + e\underline{E} m_i v_{in} \underline{v_i}$
- $0 = m_e \underline{g} \frac{1}{N} \underline{\nabla} (NkT_e) e\underline{E} m_e v_{en} \underline{v_e}$

- $\partial N/\partial t + \underline{\nabla}.(N\underline{v}) = P L$
- $0 = m_i \underline{g} \frac{1}{N} \underline{\nabla}(NkT_i) + e\underline{E} m_i v_{in} \underline{v_i}$
- $0 = m_e \underline{g} \frac{1}{N} \underline{\nabla} (NkT_e) e\underline{E} m_e v_{en} \underline{v_e}$
- One eigenfunction has v->0, other has v->infinity (guess which one I will pick)

- $\partial N/\partial t + \underline{\nabla}.(N\underline{v}) = P L$
- $0 = m_i \underline{g} \frac{1}{N} \underline{\nabla}(NkT_i) + e\underline{E} m_i v_{in} \underline{v_i}$
- $0 = m_e \underline{g} \frac{1}{N} \underline{\nabla} (NkT_e) e\underline{E} m_e v_{en} \underline{v_e}$
- $0 = m_i \underline{g} \frac{1}{N} \underline{\nabla} (Nk(T_i + T_e))$

- $0 = m_i \underline{g} \frac{1}{N} \underline{\nabla}(NkT_i) + e\underline{E} m_i v_{in} \underline{v_i}$
- $0 = m_e \underline{g} \frac{1}{N} \underline{\nabla}(NkT_e) e\underline{E} m_e v_{en} \underline{v_e}$
- $0 = m_i \underline{g} \frac{1}{N} \underline{\nabla}(Nk(T_i + T_e))$
- $m_i g = -k (Ti + Te) d (ln N)/dz$

- $0 = m_i \underline{g} \frac{1}{N} \underline{\nabla}(NkT_i) + e\underline{E} m_i v_{in} \underline{v_i}$
- $0 = m_e \underline{g} \frac{1}{N} \underline{\nabla} (NkT_e) e\underline{E} m_e v_{en} \underline{v_e}$
- $0 = m_i \underline{g} \frac{1}{N} \underline{\nabla} (Nk(T_i + T_e))$
- $m_i g = -k (Ti + Te) d (ln N)/dz$
- N proportional to exp(-z/Hp) where
- Hp = k (Ti + Te) / m_i g
- Hp = 200 km (not 20 km)

- Such diverse topside structures do exist!
- Hp ~ 20 km -> Consistent with no transport
 - Strong horizontal magnetic field
- Hp ~ 200 km -> Consistent with diffusive equilibrium
 - Strong vertical magnetic field or no field
- A+ B MEX radio occultation profiles

Summary

- MAVEN will measure:
 - Background neutral atmosphere,
 - Driving solar conditions, and
 - Ionospheric response
 - Simultaneously
- Great opportunity to determine how the ionosphere functions
- Failures of canonical predictions will show where interesting physics can be found